|
![]()
1 f) Z5 u6 Z+ L4 K 我们总是希望能够从一些样本数据中去探究数据总体的表现特征,在网站数据分析中也是如此,我们试图从最近几天的数据表现来推测目前网站的整体形势是怎么样的,有没有变好或者变差的信号,但当前几天的数据无法完全代表总体,所以这里只能使用“估计”。同时,网站的数据始终存在波动,将最近时间段的数据作为抽样样本很可能数据正好处于较低或者较高水平,所以我们用样本得到的估计值不可能是无偏差的,我们同时需要去评估这个估计值可能的变化区间。# M1 R* d0 R. a% z
参数估计(Parameter Estimation)是指用样本的统计量去估计总体参数的方法,包括点估计和区间估计。
8 B% i* L) {' Z, n W 点估计- e0 w7 Z* U, f; d! f, X/ e
点估计(Point Estimation)是用抽样得到的样本统计指标作为总体某个未知参数特征值的估计,是一种统计推断方法。' s7 L$ t! V* g) }# w
一般对总体参数的估计会包括两类:一种是用样本均值去估计总体均值,对应到网站数据中的数值型指标,比如网站每天的UV,我们可以用近一周的日均UV去估计目前网站每天唯一访客数量的大体情况;另外一种是用样本概率去估计总体概率,对应到网站数据中的比率型指标,比如网站的目标转化率,我们可以用近3天的转化率去预估网站当天目标转化的水平;同时我们会计算样本的标准差来说明样本均值或者概率的波动幅度的大小,从而估计总体数据的波动情况。4 S" Y! ] {0 B' O9 [2 u! v5 j
点估计还包括了使用最小二乘法对线性回归做曲线参数的拟合,以及最大似然估计的方法计算样本集分布的概率密度函数的参数。3 G, j! u: J* J9 A' T- w8 Z+ z
|
|